Minimization of Power Losses in Active Magnetic Bearing Control

نویسنده

  • Kemin Zhou
چکیده

Acknowledgments My special thank goes to my advisor Dr. Marcio S. de Queiroz. I thank him for all his continued support in all stages of this project. I would also like to extend my sincere gratitude to my committee members Dr. Kemin Zhou and Dr. Yitshak Ram for their valuable support and guidance. Abstract A solution to the problem of AMB control with reduced electrical power losses will be presented in this thesis. The proposed control solution will be founded on the integrator backstepping technique, which decouples the rotor stabilization problem from the bias flux design problem. It further allows for the easy redesign of the control law to compensate for uncertainties in the AMB system. A class of nonlinear controllers will be developed that reduces the AMB power losses in comparison to standard fixed-bias controllers, while containing no control singularity. Control laws will be presented for the standard AMB operating mode where both electromagnets are active at all times, as well as for the " energy-saving " operating mode where only a single electromagnet is active at any given time. The main contribution of this work is the development of a smart bias flux, and function of the rotor position and velocity. General conditions motivated by physical and mathematical properties are developed for the functional form of the bias, ensuring the reduction of power losses and the avoidance control singularities without affecting the closed-loop system stability. Simulation results also illustrate the interesting role the smart bias plays in stabilizing the rotor. Note that while the power loss discussion in this thesis is focused on ohmic losses, the proposed control strategies also help reduce eddy current-and hysteresis-induced losses due to their proportionality to the magnetic flux.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Control of a Novel hybrid Active Power Filter based on Load Harmonic Currents Separation with the aim of DC-link voltage minimization in voltage source converter

This paper proposes a new hybrid active power filter, including voltage source converter (VSC) based active power filter and Thyristor Controllable LC Passive Filter (TCLC-HAPF) for eliminating harmonic load current components and compensating reactive power. This new structure which is based on the separation of high and low-frequency components of load current idea can reduce the drawbacks of...

متن کامل

Assessing the Impact of Size and Site of DGs and SMs in Active Distribution Networks for Energy Losses Cost

The presence of responsive loads in the promising active distribution networks (ADNs) would definitely affect the power system problems such as distributed generations (DGs) studies. Hence, an optimal procedure is proposed herein which takes into account the simultaneous placement of DGs and smart meters (SMs) in ADNs. SMs are taken into consideration for the sake of successful implementing of ...

متن کامل

Analysis of Vibration Characteristics of PD Control Active Magnetic Bearing and Cracked Rotor System (RESEARCH NOTE)

Crack fault of rotor is one of the most prominent problems faced by magnetic bearing rotor system. In order to improve the safety performance of this kind of machinery, it is necessary to research the vibration characteristics of magnetic bearing cracked rotor system. In this paper, the stiffness model of the crack shaft element was established by the strain energy release rate (SERR) theory. T...

متن کامل

Simultaneous RPD and SVC Placement in Power Systems for Voltage Stability Improvement Using a Fuzzy Weighted Seeker Optimization Algorithm

Voltage stability issues are growing challenges in many modern power systems. This paper proposes optimizing the size and location of Static VAR Compensator (SVC) devices using a Fuzzy Weighted Seeker Optimization Algorithm (FWSOA), as an effective solution to overcome such issues. Although the primary purpose of SVC is bus voltage regulation, it can also be useful for voltage stability enhance...

متن کامل

Magnetic Bearing Rotordynamic System Optimization Using Multi-Objective Genetic Algorithms

Multiple objective genetic algorithms (MOGAs) simultaneously optimize a control law and geometrical features of a set of homopolar magnetic bearings (HOMB) supporting a generic flexible, spinning shaft. The minimization objectives include shaft dynamic response (vibration), actuator mass and total actuator power losses. Levitation of the spinning rotor and dynamic stability are constraint condi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006